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The Problem

The Three-Poisson Problem

The basic setting:

n ∼ Pois(εs + b)

y ∼ Pois(tb)

z ∼ Pois(uε)

Observation: The triplet (n, y , z)

Constants: (t, u) known constants

Interest parameter: s

Nuisance parameters: b, ε.

Goal: Find ŝp such that: P (s ≤ ŝp) = p (e.g. p = 0.90, p = 0.99)
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Background

Why do we care about the problem?

This problem comes from High Energy Physics, specifically, the
data expected to come from the Large Hadron Collider (LHC) at
CERN, Switzerland.

I Motivation: Detection (or otherwise) of Higgs-Boson
particles, and (possibly) their masses.

I This could either support (or violate) the Standard Model of
particle physics
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Background

The Three-Poisson Problem

In fact, the particle may decay into one of many (say, m) ‘channels’:

ni ∼ Pois(εi s + bi ) i = 1, . . . ,m

yi ∼ Pois(tibi ) i = 1, . . . ,m

zi ∼ Pois(uiεi ) i = 1, . . . ,m

I εi is the decay rate for channel i

I bi is the background rate for channel i

I (Yi ,Zi ) are collected from separate experiments designed to
estimate bi and εi

I The goal remains to find confidence limits for (the common) s

Xiao-Li Meng Representing: Paul Baines, Paul Edlefsen, Alan Lenarcic, Yaming Yu and the CHASC team

Upper Limits for source detection in the Three-Poisson Model



Introduction Methods Hierarchical Models Comparing Lengths Conclusions

Background

Challenges

The problem look really easy, right? Well. . .

(1) Extremely low signal/noise ratio

(2) Dimensionality of nuisance parameter grows with m

(3) Specifying non-informative priors for high-dimensional
nuisance parameters is tricky
(Note the sεi term: sensitive to prior on εi ’s)

(4) Turns out that the actual coverage can be very different from
nominal coverage
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Prior Specification

Prior Specification: Single Level

Conjugate priors do not exist, instead have ‘term-wise conjugate’ priors:

s ∼ Gamma(αs , βs) (1)

bi ∼iid Gamma(αb, βb) i = 1, . . . ,m (2)

εi ∼iid Gamma(αε, βε) i = 1, . . . ,m (3)

Where X ∼ Γ(α, β) has density:

fX (x) =
βα

Γ(α)
xα−1 exp {−xβ} ∀x ≥ 0

We allow this specification to include improper priors:

(e.g. (α, β) = (1, 0) corresponds to f (x) ∝ 1 ∀ x ≥ 0).
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Some Simulation Results

Simulation Results
Clearly such a strategy is unlikely to succeed (else there wouldn’t be much to
talk about!) and this is indeed the case. Here is a ‘typical’ result.

Figure: An example of undercoverage: s = 51.7, m = 10,

p(s) ∝ 1 p(bi ) ∝ b
−1/2
i p(εi ) ∝ ε

−1/2
i .
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Some Simulation Results

Key Points
Nominal coverage varies drastically as s varies (other parameters
remain of the same magnitude):

Figure: An example of overcoverage: s = 51.7, m = 10,

p(s) ∝ 1 p(bi ) ∝ b
−1/2
i p(εi ) ∝ ε

−1/2
i .
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Some Simulation Results

Single-Level Summary
Extensive simulation results yielded the following conclusions:

(1) Amongst this class of priors the following performed best:
(αs , βs , αb, βb, αε, βε) = (1, 0, 0.5, 0, 0.5, 0) i.e.:

p(s) ∝ 1 p(bi ) ∝ b
−1/2
i p(εi ) ∝ ε

−1/2
i

(2) Actual coverage is almost exact for single-channel m = 1

(3) Actual coverage differs increasingly from nominal coverage as the
number of channels m grows

(4) More complicated Empirical Bayes schemes performed poorly and
essentially ‘overfit’ the data

(5) Large overcoverage exhibited when s small (s < 1) [Note:
ε ∈ (0.04, 0.3) approx.]

(6) Large undercoverage exhibited when s large (s > 60)
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Some Simulation Results

How did it actually do?

Figure: Actual coverage of the 99th percentile (l) and the equal-tailed
99% posterior interval (r) for the single level model, with m = 10
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Hierarchical Models
The multi-dimensional ‘vague’ prior on the nuisance parameter is
the primary problem. Next step: Hierarchical Model:

ni ∼ Pois(εi s + bi ) i = 1, . . . , m

yi ∼ Pois(tibi ) i = 1, . . . , m

zi ∼ Pois(uiεi ) i = 1, . . . , m

s ∼ Gamma(αs , βs)

bi ∼iid Gamma(αb, βb) i = 1, . . . , m

εi ∼iid Gamma(αε, βε) i = 1, . . . , m

p(αs) ∝ 1 p(αb) ∼ 1 p(αε) ∝ 1

p(βs) ∼ Gamma(αβs , ββs )

p(βb) ∼ Gamma(αβb , ββb )

p(βε) ∼ Gamma(αβε , ββε)
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Discussion

Some points to mention:

(1) Flat priors can be replaced with vague proper priors if desired

(2) No longer possible to integrate out nuisance parameters,
sampling-based MCMC approach was used

(3) MCMC implementation is problematic for large-scale
simulations

(4) Hierarchical model retains physical interpretation of the
parameters
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Performance

The hierarchical model produces consistently larger 100(1− α)%
upper limits, although actual coverage remains sensitive to s.
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How did it actually do?

Figure: Actual coverage as a function of s for the hierarchical model.
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Length Comparisons

It is also very important that the intervals be as short as possible
whilst retaining excellent coverage properties. For simplicity we
shall compare lengths of the 99% intervals, although the same
conclusions hold for 90% intervals too.
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Single-level vs. Hierarchical Bayes

Figure: (L) Coverage (blue=single-level, dash=YY). (R) Comparison of lengths of
the 99th percentiles from the single-level and hierarchical Bayes models. Datasets are
ordered according to the single-level lengths, m = 10.
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Single-level vs. Dempster-Schafer

Figure: (L) Coverage (blue=single-level, dash=PE). (R) Comparison of lengths of
the 99th percentiles from the single-level and Dempster-Schafer models. Datasets are
ordered according to the single-level lengths, m = 10.
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Single-level vs. Profile Likelihood

Figure: (L) Coverage (blue=single-level, dash=DS). (R) Comparison of lengths of
the 99th percentiles from the single-level model and profile likelihood approach.
Datasets are ordered according to the single-level lengths, m = 10.
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Single-level vs. Wolfgang Rolke

Figure: (L) Coverage (blue=single-level, dash=WR). (R) Comparison of lengths of
the 99th percentiles from the single-level model and one of Wolfgang Rolke’s four
entries (unknown method). Datasets are ordered according to the single-level lengths,
m = 10

Xiao-Li Meng Representing: Paul Baines, Paul Edlefsen, Alan Lenarcic, Yaming Yu and the CHASC team

Upper Limits for source detection in the Three-Poisson Model



Introduction Methods Hierarchical Models Comparing Lengths Conclusions

Single-level vs. Luc Demortier

Figure: (Key: blue=single-level, dash=LD) Comparison of the coverage of the
99th percentiles from the single-level model and Luc Demortier’s entry, m = 10.
Unable to compare lengths due to the file format.
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Challenges

Problem remains a work in progress. . .

(1) More work is needed to fully understand the properties of the
hierarchical three-Poisson model; robustness etc.

(2) Significant improvements in implementation are required in
the MCMC scheme to permit large-scale application

(3) ‘Matching priors’ are theoretically available; implementation?
interpretation?
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Conclusions

In summary:

I The problem is deceptively challenging and further work is
needed to investigate issues such as hyperparameter
specification and robustness

I The Bayesian approach should outperform others (e.g. profile
likelihood), but only when we find the right prior. . .

I Computational challenges remain for large-scale applications

I Many theoretical questions still need to be addressed (e.g.
one-vs.two-sided, nuisance parameters, validity of Poisson
assumptions)
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In summary:

I The problem is deceptively challenging and further work is
needed to investigate issues such as hyperparameter
specification and robustness

I The Bayesian approach should outperform others (e.g. profile
likelihood), but only when we find the right prior. . .

I Computational challenges remain for large-scale applications

I Many theoretical questions still need to be addressed (e.g.
one-vs.two-sided, nuisance parameters, validity of Poisson
assumptions)
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